建筑房屋工程钢筋混凝土灌注桩施工技术研析

●黄新亮

[摘要]随着城市化进程的不断推进,建筑工程规模日益扩大,基础工程的重要性愈发凸出。钢筋混凝土灌注桩作为一种关键的基础形式,在建筑房屋工程得到被广泛应用。本文以某市商业综合体项目为背景,深入剖析其钢筋混凝土灌注桩施工技术。详细阐述了从测量定位到桩身质量检测等一系列施工技术环节。同时,针对施工中塌孔、卡钻、堵管等问题提出了有效的解决方法。通过合理有效的措施能确保灌注桩施工质量和工程的安全稳定,为提高建筑房屋工程基础施工水平提供宝贵经验。

[关键词]建筑房屋工程;钢筋混凝土灌注桩;施工技术;问题;方法

節混凝土灌注桩因其能够适应不同地质条件,提供较高承载能力,成为众多建筑工程基础的首选。然而,其施工过程涉及多个复杂工序,且易受地质复杂性、施工工艺合理性及施工管理水平等因素影响。 施工中可能出现诸如塌孔、卡钻、混凝土灌注堵管等各类问题,这些问题若得不到妥善解决,将直接影响灌注桩质量,进而危及整个建筑工程的安全。 本文以某市商业综合体项目为例,对建筑房屋工程钢筋混凝土灌注桩施工技术展开全面且深入的探讨。

ℚ 某市商业综合体项目工程概况

本项目位于某市繁华商业地段,是一座集购物、办公、酒店于一体的大型商业综合体。 该建筑地上 45 层, 地下 3 层,整体结构复杂,对基础的承载能力和稳定性要求极高。场地地质条件复杂多变,上部主要为人工填土层和淤泥质粉质粘土层,厚度 10~15m,土质松软,含水量高,具有较强的压缩性;中部为砂质粉土层和中粗砂层,厚度 12~18m,地下水丰富,透水性强;下部为强风化花岗岩和中风化花岗岩层,是理想的桩端持力层。 基于此,设计采用钢筋混凝土灌注桩基础,桩径有 1000mm、1200mm 和 1500mm 三种规格,桩长根据不同位置在 50~65m 之间不等,总桩数约500 根。

● 建筑房屋工程钢筋混凝土灌注桩施工技术分析

(一)施工技术

1.测量定位

采用先进的全站仪结合 GPS-RTK 技术进行测量定位。首先,根据设计提供的控制点,在施工现场建立首级控制网,并实施闭合差检验,确保控制点的准确性。然后,使用全站仪精确测放出每根桩的中心位置,并打入木桩作为标记。 在桩位确定后,再次使用 GPS-RTK 技术进行复核,其定位精度达到了±5mm,能够有效保证桩位的准确性,为后续施工奠定坚实基础。

2.护筒埋设施工

护筒选用 10mm 厚的优质钢板制作,根据不同桩径,护筒内径比桩径大 200~300mm(如表 1)。 护筒埋设采用振动锤辅助下沉的方法。 在软土层中,先开挖至一定深度,之后把护筒通过吊放的方式将其放置到预设位置处,再采用振动锤敲的高频振动让护筒下沉到预先设计好深度。 对于埋设,可借助全站仪来对护筒中心位置与垂直度进行监测,保证护筒中心能与桩位中心误差及垂直差不超出允许值范围。 护筒埋设的深度应不小于软土层 2m,在砂质土层环境中应不小于3m,同时护筒的顶端位置要超过地面 30cm,防止地表水流入孔内。 护筒外侧采用粘土和膨润土混合的优质泥浆进行回填,并分层夯实,以增强护筒的稳定性和密封性。

表 1 不同桩径护筒规格

桩径(mm)	护筒内径(mm)	护筒厚度(mm)	护筒埋设深度(软土层)(m)	护筒埋设深度(砂质土层)(m)	护筒顶端高出地面(cm)
1000	1200~1300	10	≥2	≥3	30
1200	1400~1500	10	≥2	≥3	30
1500	1700~1800	10	≥2	≥3	30

业前沿 | Chanye Qianyan

3.泥浆护壁施工

根据地质条件和施工经验,本项目采用膨润土泥浆护壁。 在泥浆制备过程中,严格控制膨润土的掺量、泥浆的比重、粘度和 pH 值等指标(如表 2)。 泥浆比重控制在 1.2~1.4 之间,粘度保持在 18~25s, pH 值控制在 8~10。 通过泥浆搅拌机充分搅拌,使泥浆均匀细腻。 在钻孔过程中,随着钻进深度的增加和地层的变化来实时监测泥浆性能指标,以便及时调整泥浆的配比。

表 2 膨润土、泥浆比重

项目	控制指标		
泥浆比重	1.2~1.4		
粘度	18~25s		
pH 值	8~10		

4.钻孔施工

根据不同的地层条件和桩径要求,项目选用了旋挖钻机和冲击钻机相结合的方式开展钻孔作业。 对于上部软土层和砂质土层,优先采用旋挖钻机,其具有成孔速度快、效率高、操作灵活等优点。 旋挖钻机配备不同类型的钻头,如螺旋钻头用于软土层钻进,筒式钻头用于砂质土层钻进。在钻进过程中,严格控制钻进速度和钻压,并根据地层情况适时调整。 例如,在软土层中,钻进速度控制在 $6 \sim 8 \text{m/h}$,钻压保持在 $10 \sim 15 \text{kPa}$; 在砂质土层中,钻进速度减慢至 $3 \sim 5 \text{m/h}$,钻压增加至 $15 \sim 20 \text{kPa}$ 。 当遇到中风化花岗岩层时,切换为冲击钻机,利用重锤的冲击动能破碎岩石。 冲击钻机选用合适重量的冲击锤,一般为 $8 \sim 12 \text{t}$,冲程根据岩石硬度和钻进深度调整在 $1 \sim 3 \text{m}$ 之间。

5.成孔质量检验

在钻至设计深度后,立即进行成孔质量检验。 首先,使用测绳测量孔深。 测量时将测绳缓慢放入孔底,并在孔口做好标记,将测量结果与设计孔深做对比,误差控制在土30cm以内。 然后,采用超声波测孔仪检测孔径和孔壁垂直度,超声波测孔仪沿钻孔中轴线缓缓下放,通过接收反射波信号来分析孔径和垂直度情况,确保孔径偏差不超过土50mm,垂直度偏差小于 1/150。 此外,采用沉淀盒法对孔底沉渣厚度进行检测。 将沉淀盒放置在孔底静置一段时间后取出,测量沉渣厚度,要求沉渣厚度不超过 100mm。

6.清孔施工

本项目采用气举反循环清孔工艺。 在清孔前, 先将钻具提离孔底 10~15cm, 然后通过空压机向钻杆内注入高压空气, 使孔内泥浆形成气液混合物。 在压力差的作用下, 孔底沉渣随泥浆从钻杆与孔壁之间的环状空间上升至地面, 流入沉淀池进行沉淀处理。 清孔过程中, 需要实时监测泥浆的比重、粘度和含砂率等指标。 当泥浆比重降至 1.1~1.

2, 粘度为17~20s, 含砂率小于2%时,清孔结束。

7.钢筋笼的安装

钢筋笼需要在钢筋加工场集中制作,根据桩长和起重设备能力分节制作,每节长度控制在 9~12m。 选用 HRB400级直径 20~28mm 的钢筋来当作钢筋笼主筋,而箍筋选用HPB300级钢筋,直径为 10~12mm。 在制作过程中,严格按照设计图纸要求制作钢筋笼,对于其长度和直径及主筋间距和箍筋间距等参数值(如表 3)应进行严格把控。 主筋间连接方式可采用焊接工艺来完成,焊缝长度控制在 10d 以内,焊缝高度和宽度分别为大于 0.3d、小于 0.7d。 在钢筋笼上每隔 2~3m 设置一道加强箍筋,增强钢筋笼的整体刚度。 在安放钢筋笼时,采用 200t 履带式起重机将钢筋笼缓慢吊起,对准孔位后垂直下放。 下放过程中,设置专人指挥,避免钢筋笼碰撞孔壁使孔壁发生损坏。 待钢筋笼放到设计好的深度后,应立即将其固定于孔口的护筒上,防止出现钢筋笼上浮或是下沉的情况。

表 3 钢筋笼制作参数

١	钢筋笼	钢筋	钢筋直	间距偏	连接方式
	部位	级别	径(mm)	差(mm)	及要求
	主筋	HRB400 级	20~28	±10	焊接,焊缝长度 10d,焊 缝高度 0.3d,焊缝宽度 d
	箍筋	HPB300 级	10~12	±20	_

8.导管安装

导管选用内径为 250~300mm 的无缝钢管制作,每节长度为 2~3m,导管之间采用丝扣连接,并配备橡胶垫圈,确保连接牢固、密封性好。 导管在使用前需进行密封性试验,将导管组装后两端封闭,通入压力为 0.6~1.0MPa 的压缩空气,持续 15~30min,观察导管有无漏气现象,如有漏气则及时修复或更换。 导管安装时,先将导管底部距孔底距离控制在 300~500mm,然后逐节连接并下放至孔内。在安放过程中,使用吊车配合人工操作,确保导管垂直、居中下放,避免碰撞钢筋笼。

9.水下砼灌注施工

混凝土采用商品混凝土,这些都是由搅拌站统一提供的。混凝土料体的配合比是按设计标准及施工规范来进行设计,所用混凝土等级是 C40 到 C50, 坍落度控制在 180~220mm 之间。 在混凝土灌注前,需要先检查导管的密封性和悬空高度。 之后,计算确认首批混凝土需求量。 对于首批混凝土使用量,必须达到导管初埋深度不小于 1.0m 和填充导管底部所需量这一要求。 本工程通通过计算确定首批混凝土灌注需求量为 3~5m³。 首批混凝土灌注主要采用的是大漏斗加储料斗的方式来完成的,在储料斗中的混凝土量满足设计值要求时,开启阀门,混凝土落入孔底,连续灌注

边灌注边提升导管,提升速度约为 2~3m/h,导管埋深要控 制在 2~6m 之间。 在灌注时安排专人用测绳来测算混凝土 面的高度,每灌注 2~3m3 时便测量一次,并记录好。 要持 续关注导管内混凝土下落和孔口返浆详情, 如果发现导管内 的混凝土出现堵塞或是孔口有返浆异常情况, 应及时采取措 施处理。 针对这一情况可通过上下抽动导管、增加混凝土 坍落度等方法来应对。 当混凝土灌注高快达到桩顶设计标 高时,可放慢速度,并同时测量混凝土面高度,以保证桩头 混凝土质量。

10.桩身质量检测

在混凝土灌注完成28天后,可通过超声波透射法搭配 钻芯法的组合来检测桩身质量。 超声波透射法要求在钢筋 笼的制作过程中先将声测管埋设好。 声测管采用钢管制 作,内径为50~60mm,沿钢筋笼圆周均匀布置3~4根。 检测时,将超声波检测仪的探头分别放入声测管内,通过发 射和接收超声波信号,分析桩身混凝土的完整性和均匀性, 由此判断桩身是否存在如夹泥、蜂窝、空洞等问题。 钻芯 法的实现需要利用钻芯机来钻取桩身混凝土将其当作芯样。 钻芯直径 100~150mm 为宜,之后需要通过观察芯样外表质 量、强度和完整性来进一步验证桩身质量。

(二)项目工程施工中遇到的问题及解决方法

1. 塌孔问题及解决方法

在穿越淤泥质粉质粘土层时,由于该土层土质松软、含 水量高,容易发生塌孔现象。 具体表现为孔壁出现局部坍 塌,泥浆中出现大量泥块,钻孔深度无法继续增加。针对 这一问题应立即停止钻进,并向孔内投放粘土和片石,然后 采用低速慢转的方式进行钻进, 使粘土和片石在钻头的挤压 下填充到塌孔部位,形成稳定的护壁。 同时,要加大泥浆 比重和粘度,增强泥浆的护壁能力,一般将泥浆比重提高至 1.4~1.5, 粘度提高至 25~30s。 经过处理后, 塌孔现象得 到有效控制,钻孔作业得以继续进行。

2.卡钻问题及解决方法

在冲击钻进中风化花岗岩层时,由于岩石硬度较大,钻 头磨损较快,容易出现卡钻现象。 钻头被卡在孔内,无法 正常提升或转动。 这时应先采用轻锤慢击的方式尝试松动 钻头,如果无效,则向孔内注入适量的润滑油,减小钻头与 孔壁之间的摩擦力。 同时,配合吊车,缓慢提升钻头,在 提問工

提升过程中不断调整钻头的角度, 使其能顺利脱离卡点。 若卡钻情况较为严重,还需采用水下爆破的方式将卡点岩石 破碎, 但在爆破前需开展详细的安全评估和防护措施, 确保 施工安全。

3.混凝土灌注堵管问题及解决方法

在混凝土灌注过程中,由于导管密封性不好或混凝土坍 落度较小,容易出现堵管现象。 主要表现为导管内混凝土 无法正常下落, 孔口返浆停止。 面对此问题, 首先应检查 导管的连接部位, 如有松动或密封不严的情况, 需及时进行 紧固或更换密封垫圈。 然后,使用长杆工具插入导管内进 行疏通,同时向导管内加入适量的水泥砂浆,增加混凝土的 流动性。 如果堵管情况较为严重,无法通过疏通解决,则 需拔出导管,清理干净后重新安装,重新灌注混凝土。

◎ 结束语

通过本案例分析可以看出, 在钢筋混凝土灌注桩施工过 程中,不同的地质条件具有不同的工程要求,那么所用的施 工机械与工艺也需基于此做出相应的调整,同时要对施工过 程各环节进行严格把控,加强质量检测和问题处理。 只有 这样才能保证灌注桩的施工质量和工程的安全稳定。 除做 好这些工作外,还应不断总结经验教训,优化施工技术和管 理方法,这对于提高建筑房屋工程基础施工水平具有重要 意义。

3 参考文献

[1]曲延康.钢筋混凝土结构施工技术在房屋建筑施工中的应用 研究[1],中国建筑金属结构,2022,21(09):49-51.

[2]冯志帅.浅析建筑工程钢筋混凝土灌注桩施工技术[1].江西 建材,2021(08):128-129.

[3] 崔舟.钢筋混凝土灌注桩施工过程中的质量控制[J].地产 2019(17):137.

[4]杨绍华,王持久.混凝土灌注桩后基础开挖与沉基坑支护施工 技术「J7.施工技术,2010,39(S2):39-41.

黄新亮(1985-),男,汉族,江西南昌人,本科,工程师,江西昌贤 建设集团有限公司,研究方向:建筑工程管理。